PUBLICATION
Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish
- Authors
- Rhodes, J., Hagen, A., Hsu, K., Deng, M., Liu, T.X., Look, A.T., and Kanki, J.P.
- ID
- ZDB-PUB-050104-3
- Date
- 2005
- Source
- Developmental Cell 8(1): 97-108 (Journal)
- Registered Authors
- Hsu, Karl, Kanki, John, Liu, Ting Xi, Look, A. Thomas, Rhodes, Jennifer
- Keywords
- none
- MeSH Terms
-
- Cell Movement/physiology
- Embryonic Induction
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- In Situ Hybridization/methods
- Transcription Factors/genetics
- Transcription Factors/physiology*
- Zebrafish/embryology
- Animals, Genetically Modified
- GATA1 Transcription Factor
- RNA, Messenger/biosynthesis
- Hematopoiesis/physiology
- Gene Expression Regulation, Developmental/physiology
- Models, Biological
- Erythroid-Specific DNA-Binding Factors
- Genotype
- Flow Cytometry/methods
- Trans-Activators/genetics
- Trans-Activators/physiology*
- Microinjections/methods
- Myeloid Progenitor Cells/physiology*
- Reverse Transcriptase Polymerase Chain Reaction/methods
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology*
- Erythroid Precursor Cells/physiology*
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- Cell Differentiation/physiology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology*
- Animals
- Transplantation/methods
- PubMed
- 15621533 Full text @ Dev. Cell
Citation
Rhodes, J., Hagen, A., Hsu, K., Deng, M., Liu, T.X., Look, A.T., and Kanki, J.P. (2005) Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Developmental Cell. 8(1):97-108.
Abstract
The zebrafish is a powerful model system for investigating embryonic vertebrate hematopoiesis, allowing for the critical in vivo analysis of cell lineage determination. In this study, we identify zebrafish myeloerythroid progenitor cells (MPCs) that are likely to represent the functional equivalent of mammalian common myeloid progenitors. Utilizing transgenic pu.1-GFP fish, real-time MPC differentiation was correlated with dynamic changes in cell motility, morphology, and gene expression. Unlike mammalian hematopoiesis, embryonic zebrafish myelopoiesis and erythropoiesis occur in anatomically separate locations. Gene knockdown experiments and transplantation assays demonstrated the reciprocal negative regulation of pu.1 and gata1 and their non-cell-autonomous regulation that determines myeloid versus erythroid MPC fate in the distinct blood-forming regions. Furthermore, forced expression of pu.1 in the bloodless mutant cloche resulted in myelopoietic rescue, providing intriguing evidence that this gene can function in the absence of some stem cell genes, such as scl, in governing myelopoiesis.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping