PUBLICATION
            Gene expression profiles of intact and regenerating zebrafish retina
- Authors
- Cameron, D.A., Gentile, K.L., Middleton, F.A., and Yurco, P.
- ID
- ZDB-PUB-051012-4
- Date
- 2005
- Source
- Molecular Vision 11: 775-791 (Journal)
- Registered Authors
- Cameron, David A.
- Keywords
- none
- Datasets
- GEO:GSE3303
- MeSH Terms
- 
    
        
        
            
                - Gene Expression Profiling*
- Zebrafish/physiology*
- DNA Primers/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Gene Expression/physiology*
- Wound Healing/physiology*
- Animals
- Brain/physiology
- Retina/injuries
- Retina/physiology*
- Oligonucleotide Array Sequence Analysis*
 
- PubMed
- 16205622
            Citation
        
        
            Cameron, D.A., Gentile, K.L., Middleton, F.A., and Yurco, P. (2005) Gene expression profiles of intact and regenerating zebrafish retina. Molecular Vision. 11:775-791.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                PURPOSE: Investigate the molecular determinants of retinal regeneration in adult vertebrates by analyzing the gene expression of control and post-lesion retina of adult zebrafish, a system that regenerates following injury. METHODS: Gene expression of zebrafish retina and brain were determined with DNA microarray, RT-PCR, and real-time quantitative PCR analyses. Damaged retinas and their corresponding controls were analyzed 2-5 days post-lesion (acute injury condition) or 14 d post-lesion (cell regeneration condition). RESULTS: Expected similarities and differences in the gene expression profile of zebrafish retina and brain were observed, confirming the applicability of the gene expression techniques. Mechanical lesion of retina triggered significant, time-dependent changes in retinal gene expression. The induced transcriptional changes were consistent with cellular phenomena known to occur, in a time-dependent manner, subsequent to retinal lesion, including cell cycle progression, axonal regeneration, and regenerative cytogenesis. CONCLUSIONS: The results indicate that retinal regeneration in adult zebrafish involves a complex set of induced, targeted changes in gene transcription, and suggest that these molecular changes underlie the ability of the adult vertebrate retina to regenerate.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    