PUBLICATION
            Huntingtin-deficient zebrafish exhibit defects in iron utilization and development
- Authors
- Lumsden, A.L., Henshall, T.L., Dayan, S., Lardelli, M.T., and Richards, R.I.
- ID
- ZDB-PUB-070629-2
- Date
- 2007
- Source
- Human molecular genetics 16(16): 1905-1920 (Journal)
- Registered Authors
- Lardelli, Michael
- Keywords
- none
- MeSH Terms
- 
    
        
        
            
                - Huntington Disease/genetics
- Huntington Disease/metabolism
- Genes, Dominant
- Phenotype
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental
- Hemoglobins/biosynthesis
- RNA, Messenger/metabolism
- Zebrafish/embryology*
- Zebrafish/metabolism*
- Animals
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
- Zebrafish Proteins/physiology*
- Receptors, Transferrin/genetics
- Iron/metabolism*
 
- PubMed
- 17567778 Full text @ Hum. Mol. Genet.
            Citation
        
        
            Lumsden, A.L., Henshall, T.L., Dayan, S., Lardelli, M.T., and Richards, R.I. (2007) Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Human molecular genetics. 16(16):1905-1920.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Huntington's disease is one of nine neurodegenerative disorders caused by expansion of CAG repeats encoding polyglutamine in their respective, otherwise apparently unrelated proteins. Despite these proteins having widespread and overlapping expression patterns in the brain, a specific and unique subset of neurons exhibits particular vulnerability in each disease. It has been hypothesized that perturbation of normal protein function contributes to the specificity of neuronal vulnerability, however the normal biological functions of many of these proteins including the HD gene product, Huntingtin (Htt), are unclear. To explore the roles of Htt, we have used antisense morpholino oligonucleotides to observe the effects of Htt deficiency in early zebrafish development. Knockdown of Htt expression resulted in a variety of developmental defects. Most notably, Htt-deficient zebrafish had hypochromic blood due to decreased haemoglobin production, despite the presence of iron within blood cells. Furthermore, transferrin receptor 1 transcripts were increased, suggesting cellular iron starvation. Provision of iron to the cytoplasm in a bio-available form restored haemoglobin production in Htt-deficient embryos. Since erythroid cells acquire iron via receptor-mediated endocytosis of transferrin, these results suggest a role for Htt in making endocytosed iron accessible for cellular utilization. Iron is required for oxidative energy production, and defects in iron homeostasis and energy metabolism are features of HD pathogenesis that are most pronounced in the major region of neurodegeneration. It is therefore plausible that perturbation of Htt's normal role in the iron pathway (by polyglutamine tract expansion) contributes to HD pathology, and particularly to its neuronal specificity.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    