PUBLICATION
            Deletion of a kinesin I motor unmasks a mechanism of homeostatic branching control by neurotrophin-3
- Authors
 - Auer, T.O., Xiao, T., Bercier, V., Gebhardt, C., Duroure, K., Concordet, J.P., Wyart, C., Suster, M., Kawakami, K., Wittbrodt, J., Baier, H., Del Bene, F.
 - ID
 - ZDB-PUB-150616-2
 - Date
 - 2015
 - Source
 - eLIFE 4: (Journal)
 - Registered Authors
 - Auer, Thomas, Baier, Herwig, Bercier, Valérie, Del Bene, Filippo, Duroure, Karine, Gebhardt, Christoph, Kawakami, Koichi, Suster, Maximiliano, Wittbrodt, Jochen, Wyart, Claire, Xiao, Tong
 - Keywords
 - axonal development, neuroscience, neurotrophic signaling, visual system, zebrafish
 - MeSH Terms
 - 
    
        
        
            
                
- Microscopy, Confocal
 - Cell Polarity/physiology*
 - Neurogenesis/physiology*
 - Animals
 - Axons/physiology*
 - Genotype
 - Real-Time Polymerase Chain Reaction
 - Time-Lapse Imaging
 - Immunohistochemistry
 - Signal Transduction/physiology*
 - Microscopy, Electron, Transmission
 - Zebrafish/embryology*
 - Blotting, Western
 - In Situ Hybridization
 - Animals, Genetically Modified
 - Cloning, Molecular
 - Zebrafish Proteins/metabolism*
 - Chromosome Mapping
 - Neurotrophin 3/metabolism*
 - Biological Transport/physiology
 - Mitochondria/metabolism
 - Kinesins/genetics
 - Kinesins/metabolism*
 - DNA Primers/genetics
 
 - PubMed
 - 26076409 Full text @ Elife
 
            Citation
        
        
            Auer, T.O., Xiao, T., Bercier, V., Gebhardt, C., Duroure, K., Concordet, J.P., Wyart, C., Suster, M., Kawakami, K., Wittbrodt, J., Baier, H., Del Bene, F. (2015) Deletion of a kinesin I motor unmasks a mechanism of homeostatic branching control by neurotrophin-3. eLIFE. 4.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Development and function of highly polarized cells such as neurons depend on microtubule-associated intracellular transport, but little is known about contributions of specific molecular motors to the establishment of synaptic connections. In this study, we investigated the function of the Kinesin I heavy chain Kif5aa during retinotectal circuit formation in zebrafish. Targeted disruption of Kif5aa does not affect retinal ganglion cell differentiation, and retinal axons reach their topographically correct targets in the tectum, albeit with a delay. In vivo dynamic imaging showed that anterograde transport of mitochondria is impaired, as is synaptic transmission. Strikingly, disruption of presynaptic activity elicits upregulation of Neurotrophin-3 (Ntf3) in postsynaptic tectal cells. This in turn promotes exuberant branching of retinal axons by signaling through the TrkC receptor (Ntrk3). Thus, our study has uncovered an activity-dependent, retrograde signaling pathway that homeostatically controls axonal branching.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping