PUBLICATION
            Wnt signaling and tbx16 form a bistable switch to commit bipotential progenitors to mesoderm
- Authors
 - Bouldin, C.M., Manning, A.J., Peng, Y.H., Farr, G.H., Hung, K.L., Dong, A., Kimelman, D.
 - ID
 - ZDB-PUB-150723-5
 - Date
 - 2015
 - Source
 - Development (Cambridge, England) 142: 2499-507 (Journal)
 - Registered Authors
 - Farr III, G. Hank, Kimelman, David
 - Keywords
 - Bipotential, Neuromesodermal, Somitogenesis, Spadetail, Tbx16, Wnt
 - MeSH Terms
 - 
    
        
        
            
                
- Oligonucleotides/chemistry
 - Mesoderm/metabolism*
 - Muscles/embryology
 - Muscles/metabolism
 - Cell Movement
 - Mice
 - Body Patterning
 - Wnt3A Protein/metabolism
 - Zebrafish
 - Zebrafish Proteins/metabolism*
 - Microscopy, Fluorescence
 - Cell Differentiation
 - Wnt Signaling Pathway*
 - Neurons/metabolism
 - Promoter Regions, Genetic
 - Transgenes
 - Animals
 - Heat-Shock Proteins/metabolism
 - T-Box Domain Proteins/metabolism*
 - Gene Expression Regulation, Developmental*
 - Cell Lineage
 - Stem Cells/cytology
 - In Situ Hybridization
 
 - PubMed
 - 26062939 Full text @ Development
 
            Citation
        
        
            Bouldin, C.M., Manning, A.J., Peng, Y.H., Farr, G.H., Hung, K.L., Dong, A., Kimelman, D. (2015) Wnt signaling and tbx16 form a bistable switch to commit bipotential progenitors to mesoderm. Development (Cambridge, England). 142:2499-507.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Anterior to posterior growth of the vertebrate body is fueled by a posteriorly located population of bipotential neuro-mesodermal progenitor cells. These progenitors have a limited rate of proliferation and their maintenance is crucial for completion of the anterior-posterior axis. How they leave the progenitor state and commit to differentiation is largely unknown, in part because widespread modulation of factors essential for this process causes organism-wide effects. Using a novel assay, we show that zebrafish Tbx16 (Spadetail) is capable of advancing mesodermal differentiation cell-autonomously. Tbx16 locks cells into the mesodermal state by not only activating downstream mesodermal genes, but also by repressing bipotential progenitor genes, in part through a direct repression of sox2. We demonstrate that tbx16 is activated as cells move from an intermediate Wnt environment to a high Wnt environment, and show that Wnt signaling activates the tbx16 promoter. Importantly, high-level Wnt signaling is able to accelerate mesodermal differentiation cell-autonomously, just as we observe with Tbx16. Finally, because our assay for mesodermal commitment is quantitative we are able to show that the acceleration of mesodermal differentiation is surprisingly incomplete, implicating a potential separation of cell movement and differentiation during this process. Together, our data suggest a model in which high levels of Wnt signaling induce a transition to mesoderm by directly activating tbx16, which in turn acts to irreversibly flip a bistable switch, leading to maintenance of the mesodermal fate and repression of the bipotential progenitor state, even as cells leave the initial high-Wnt environment.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping