PUBLICATION
            Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock
- Authors
- Webb, A.B., Lengyel, I.M., Jörg, D.J., Valentin, G., Jülicher, F., Morelli, L.G., Oates, A.C.
- ID
- ZDB-PUB-160218-8
- Date
- 2016
- Source
- eLIFE 5: (Journal)
- Registered Authors
- Oates, Andrew
- Keywords
- computational biology, developmental biology, stem cells, systems biology, zebrafish, biological clock, gene expression noise, oscillator, somitogenesis, theoretical modelling, timelapse imaging
- MeSH Terms
- 
    
        
        
            
                - Gene Expression Profiling
- Artificial Gene Fusion
- Zebrafish Proteins/biosynthesis
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Animals
- Zebrafish/embryology*
- Zebrafish/physiology*
- Cell Physiological Phenomena*
- Animals, Genetically Modified/embryology
- Biological Clocks*
- Genes, Reporter
- Cells, Cultured
 
- PubMed
- 26880542 Full text @ Elife
            Citation
        
        
            Webb, A.B., Lengyel, I.M., Jörg, D.J., Valentin, G., Jülicher, F., Morelli, L.G., Oates, A.C. (2016) Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock. eLIFE. 5.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                In vertebrate development, the sequential and rhythmic segmentation of the body axis is regulated by a 'segmentation clock.' This clock is comprised of a population of coordinated oscillating cells that together produce rhythmic gene expression patterns in the embryo. Whether individual cells autonomously maintain oscillations, or whether oscillations depend on signals from neighboring cells is unknown. Using a transgenic zebrafish reporter line for the cyclic transcription factor Her1, we recorded single tailbud cells in vitro. We demonstrate that individual cells can behave as autonomous cellular oscillators. We described the observed variability in cell behavior using a theory of generic oscillators with correlated noise. Single cells have longer periods and lower precision than the tissue, highlighting the role of collective processes in the segmentation clock. Our work reveals a population of cells from the zebrafish segmentation clock that behave as self-sustained, autonomous oscillators with distinctive noisy dynamics.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    