PUBLICATION
            Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates)
- Authors
- Xavier, A.L., Fontaine, R., Bloch, S., Affaticati, P., Jenett, A., Demarque, M., Vernier, P., Yamamoto, K.
- ID
- ZDB-PUB-170316-3
- Date
- 2017
- Source
- The Journal of comparative neurology 525(9): 2265-2283 (Journal)
- Registered Authors
- Demarque, Michael, Vernier, Philippe, Yamamoto, Kei
- Keywords
- CSF-contacting cells, PVO, RRID: AB_10000240, RRID: AB_2201528, RRID: AB_221448, RRID: AB_2314334, RRID: AB_2314655, RRID: AB_477522, RRID: AB_87181, RRID: AB_94865, dopamine, evolution, hypothalamus, monoamine, serotonin, ventricle
- MeSH Terms
- 
    
        
        
            
                - Animals
- Biological Evolution
- Male
- Brain/cytology*
- Brain/metabolism
- Zebrafish
- Vertebrates
- ELAV Proteins/metabolism
- Chick Embryo
- Neurons/classification
- Neurons/metabolism*
- Xenopus
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- RNA, Messenger/metabolism
- Zonula Occludens-1 Protein/metabolism
- Imaging, Three-Dimensional
- Chickens
- Biogenic Monoamines/metabolism*
- Cerebrospinal Fluid/physiology*
 
- PubMed
- 28295297 Full text @ J. Comp. Neurol.
            Citation
        
        
            Xavier, A.L., Fontaine, R., Bloch, S., Affaticati, P., Jenett, A., Demarque, M., Vernier, P., Yamamoto, K. (2017) Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates). The Journal of comparative neurology. 525(9):2265-2283.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Cerebrospinal fluid-contacting (CSF-c) cells containing monoamines such as dopamine (DA) and serotonin (5-HT) occur in the periventricular zones of the hypothalamic region of most vertebrates except for placental mammals. Here we compare the organization of the CSF-c cells in chicken, Xenopus, and zebrafish, by analyzing the expression of synthetic enzymes of DA and 5-HT, respectively tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), and draw an evolutionary scenario for this cell population. Due to the lack of TH immunoreactivity in this region, the hypothalamic CSF-c cells have been thought to take up DA from the ventricle instead of synthesizing it. We demonstrate that a second TH gene (TH2) is expressed in the CSF-c cells of all the three species, suggesting that these cells do indeed synthetize DA. Furthermore, we found that many CSF-c cells co-express TH2 and TPH1 and contain both DA and 5-HT, a dual neurotransmitter phenotype hitherto undescribed in the brain of any vertebrate. The similarities of CSF-c cells in chicken, Xenopus, and zebrafish suggest that these characteristics are inherited from the common ancestor of the Osteichthyes. A significant difference between tetrapods and teleosts is that teleosts possess an additional CSF-c cell population around the posterior recess (PR) that has emerged in specific groups of Actinopterygii. Our comparative analysis reveals that the hypothalamus in mammals and teleosts has evolved in a divergent manner: placental mammals have lost the monoaminergic CSF-c cells, while teleosts have increased their relative number.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    